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Abstract. We propose a general wrapper for feature learning that inter-
faces with other machine learning methods to compose effective data
representations. The proposed feature engineering wrapper (FEW) uses
genetic programming to represent and evolve individual features tailored
to the machine learning method with which it is paired. In order to
maintain feature diversity, ε-lexicase survival is introduced, a method
based on ε-lexicase selection. This survival method preserves semanti-
cally unique individuals in the population based on their ability to solve
difficult subsets of training cases, thereby yielding a population of uncor-
related features. We demonstrate FEW with five different off-the-shelf
machine learning methods and test it on a set of real-world and syn-
thetic regression problems with dimensions varying across three orders
of magnitude. The results show that FEW is able to improve model test
predictions across problems for several ML methods. We discuss and
test the scalability of FEW in comparison to other feature composition
strategies, most notably polynomial feature expansion.

Keywords: Genetic programming · Feature selection · Representation
learning · Regression

1 Introduction

The success of machine learning (ML) algorithms in generating predictive mod-
els depends completely on the representation of the data used to train them.
For this reason, and given the accessibility of many standard ML implementa-
tions to today’s researchers, feature selection and synthesis are quickly becoming
the most pressing issues in machine learning. The goal of feature engineering,
i.e. feature learning or representation learning [2], is to learn a transforma-
tion of the attributes that improves the predictions made by a learning algo-
rithm. Formally, given N paired examples of d attributes from the training set
T = {(xi, yi), i = 1 . . . N}, we wish to find a P -dimensional feature mapping
Φ(x) : Rd → R

P for a regression model ŷ(Φ(x)) : RP → R that performs better
than the model ŷ(x) : Rd → R formed directly from x. Doing so is a significant
challenge, since it is not straightforward to determine useful nonlinear trans-
formations of the raw feature set that may prove consequential in predicting
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the phenomenon in question. It is known that optimal feature selection (that
is, selecting the optimal subset of features from a dataset) is itself hard [4],
not to mention the process of determining an optimal feature representation.
Although approaches to feature expansion are well known, for example polyno-
mial basis expansion, these methods must be paired with a feature selection or
parameter regularization scheme to control model complexity [5]. As we argue
and show in this paper, feature engineering using genetic programming (GP) can
be competitive in this task of optimizing the data representation for several ML
methods, leading to more predictive regression models with a controlled number
of features.

Typically GP is applied to regression by constructing and optimizing a popu-
lation of symbolic models. Symbolic regression is a useful method for generating
meaningful model structures for real-world applications [13] due to its flexibility
in model representation. This comes at the expense of high computational cost,
due to the expansive search space required to search model structures and para-
meters. In comparison, many ML approaches only attempt optimize the para-
meters of a single, fixed model structure with respect to a loss function, such
as the mean squared error (linear regression) or the ε-insensitive loss (support
vector regression). Recent studies in GP [1,3] suggest that computation time can
be saved by narrowing the scope of search to the space of model building-blocks
rather than models themselves, and then generating a model via linear regression
over the population outputs. Such an approach presents new challenges, since
the population should no longer be pressured to converge on a single model,
but rather to reach a set of transformations that are more or less orthogonal
to each other. In this paper, we extend previous work by introducing a gen-
eral framework for feature engineering that is agnostic with respect to the ML
method used, and that modifies a recent parent selection technique [14] to main-
tain an uncorrelated population of features. The proposed feature engineering
wrapper (FEW) is a GP-based method that interfaces with Scikit-learn [21] to
provide generic feature engineering for its entire suite of learners. It is available
open-source1 as a Python package via the Python Package Index (PyPi)2.

In this paper we demonstrate FEW in conjunction with Lasso [25], linear and
non-linear support vector regression (SVR), K-Nearest Neighbors (KNN) regres-
sion, and decision tree (DT) regression. We show that in many cases, FEW is able
to significantly improve the learners with which it is paired. We also demonstrate
that for problems with large numbers of attributes, FEW is able to effectively
search the feature space to generate models with a smaller set of optimized fea-
tures, a task that is infeasible for some brute-force feature expansion methods.
Central to the ability of FEW to learn a set of features rather than a single
redundant feature is its use of a new survival method, known as ε-lexicase sur-
vival, which is introduced in Sect. 2.1. ε-lexicase suvival is a variant of ε-lexicase
selection [14] that maintains a population of individuals with unique outputs and

1 https://github.com/lacava/few.
2 https://pypi.python.org/pypi/FEW.

https://github.com/lacava/few
https://pypi.python.org/pypi/FEW
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that survive based on their performance in the context of both the population
semantics and the difficulty of the training cases.

We describe FEW in detail in Sect. 2, including a description of the survival
algorithm as well as a discussion the scalability of this approach compared to
other feature composition strategies. We review related work in Sect. 3, both
in GP and in representation learning. The experiments are described in Sect. 4
and include a hyper-parameter optimization study of FEW and an analysis of
FEW on a number of real-world problems and ML algorithms in comparison
to polynomial basis expansion. The results are presented in Sect. 5 in terms of
model accuracy on test sets and the rankings of methods across problems. We
discuss the results and future work in Sect. 6 and conclude in Sect. 7.

2 Feature Engineering Wrapper

FEW uses GP optimize a population of feature transformations that are used to
generate a predictive model each generation using a user-defined ML method.
It continues to optimize the feature transformations as a GP population while
building a single predictive model at the beginning of each subsequent genera-
tion. The steps of FEW are shown in Fig. 1.

FEW begins by fitting a model using a given ML method and the original
attributes. This model is stored, along with its score on an internal validation
set, and updated whenever a model is found with a better cross-validation (CV)
score. This guarantees that the model generated by FEW performs at least as
well on the internal validation set as the underlying ML method with which it
is paired. FEW then constructs an initially random population of engineered
features represented as Φk(x) in Fig. 1. This initial population is seeded with
any original attributes with non-zero coefficients (for ML methods that use coef-
ficients); for example, Φk may equal [x1, x2, φ3, . . . , φP ], where x1 and x2 are
seeded from the initial ML model, and φ3 . . . φp are initialized randomly. FEW
then loops through the processes of selection, variation, fitness, survival, and ML
model construction.

The selection phase is treated as an opportunity for feedback from the ML
model on the current population of features, if any, to bias the parents chosen
for variation. For example, some learners (e.g. Lasso, SVR) implement �1 reg-
ularization to minimize feature coefficients as a form of feature selection. This
information is incorporated during selection by removing individuals with coeffi-
cients of zero. Otherwise, selection for variation is random; note that selection is
designed to be generally weak in order to prevent population convergence. The
selected population is represented by Φk′

in Fig. 1.
Following selection, the individuals in the population are varied using sub-

tree crossover and point mutation to produce individuals Φoffspring. The fitness of
each feature is then assessed. It is tempting to tailor the fitness function to each
individual ML algorithm, but in the interest of time and scope, fairly conven-
tional fitness metrics are used here. For the ML methods designed to minimize
mean squared error (MSE), the MSE metric is used in fitness assessment. For
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SVR, where the ε-insensitive loss function is minimized, the mean absolute error
(MAE) is used.

After fitness assessment, the set consisting of the parents and offspring (Φk′

and Φoffspring) compete for survival, resulting in a reduction of the population
back to its original size. This updated population of features, Φk+1 in Fig. 1, is
then used to fit a new ML model and the process repeats.

Fig. 1. Steps in the FEW process. After fitting an initial ML model, a set of feature
transformations are initialized in a GP population. These engineered features are used
to fit a new ML model each generation. The engineered features are then updated via
selection, variation, fitness assessment and survival. The final model returned is that
with the highest internal validation score among models generated.

Defining a GP system in such a way presents unique challenges. The individ-
uals in the population not only have to compete to be effective features to solve
the problem, but must work well in combination with the rest of the population.
As a result, it is undesirable to have redundant i.e. correlated features, or to
have the population converge to a single behavior. The goal instead is to have a
population of features that essentially minimize the residuals of the outputs of
other individuals in the population. As such, we are motivated to use ε-lexicase
selection [14] as the survival scheme for individuals, since this method rewards
individuals for performing well on unique subsets of the training samples. This
method shifts selection pressure continually to training cases that have are most
difficult for the population to solve, as defined by population performance. It also
has been shown to maintain very high semantic diversity in the population [8,14],
which should result in un-correlated engineered features.



84 W. La Cava and J. Moore

2.1 ε-lexicase Survival

Ideally, the population would consist of uncorrelated features that complement
each other in the construction of a single model. Central to this goal is main-
taining diversity among individual outputs in the population while continuing to
improve model prediction. With this in mind, we propose a new method for the
survival routine called ε-lexicase survival that chooses individuals for survival
based on their performance on unique subsets of training cases. It implements a
slight alternation of ε-lexicase selection [14], a recent method for parent selection
based on lexicase selection [8,23], in order to (1) make ε-lexicase return unique
individuals and (2) make ε-lexicase work for survival rather than selection. The
basic ε-lexicase survival strategy is as follows:

1. Initialize
(a) Set candidates to be the remaining (unselected) population of programs.
(b) Set cases to be a list of all of the training cases in the training set in

random order.
2. Loop

(a) Set candidates to be the subset of the current candidates that are
within ε of the best performance of any individual currently in candi-
dates for the first case in cases.

(b) If candidates contains just a single individual then return it.
(c) If cases contains just a single training case then return a randomly

selected individual from candidates.
(d) Otherwise remove the first case from cases and go to Loop.

This routine is repeated until the surviving population matches the user-
defined population size. Several methods of determining ε were presented in the
original paper [14]; we use the most successful one, which defines ε based on the
median absolute deviation of fitnesses on the training case in question. In other
words, for each training case i, εi is defined as

εi = median (|ei − median(ei)|) (1)

where ei ∈ R
|2P | is the fitness on training case i of every individual in the set

consisting of parents and their offspring. This definition of ε is nice because
it is parameter free, adjusts to accommodate differences in hardness of training
cases and population performance, and has been demonstrated to perform better
than user-defined versions [13]. Two other differences between ε-lexicase survival
and selection should be noted. First, unlike ε-lexicase selection, once an individ-
ual has been chosen for survival, it is removed from the survival pool in step
1.(a). This is to prevent the same individual from being selected multiple times,
which would lead to redundant features in the population. In addition, 2.(a) in
ε-lexicase survival is more similar to lexicase selection [23] in that the best error
is defined relative to the current candidates rather than the whole population.
In ε-lexicase selection, this was not the case.
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2.2 Scaling

It is worth considering the complexity of the proposed method in the context of
other feature engineering methods, namely basis function expansions and kernel
transformations. Basis function expansions may scale exponentially; for example
a n-degree polynomial expansion of d features grows as O(dn). Kernel representa-
tions, meanwhile, scale with the number of samples; the complexity of computing
a kernel is O(N2) and computing the solution to a kernelized regression problem
with parameter regularization is O(N3) [5]. In comparison, FEW scales linearly
with N , and otherwise scales according to the population size P and the number
of generations g set by the user. This scaling can be advantageous compared to
basis function expansion when the number of features is large, since the user
controls the number of features to be included in the ML model (P ), as well as
the training time via g. For large sample sizes, FEW may be advantageous with
respect to kernel expansion as well. The survival method used determines how
FEW scales with respect to P . ε-lexicase survival has a worst-case complexity of
O(P 2N) in selecting a suvivor, compared to O(PN) for tournament selection.
In practice, however, it should be noted that no significant difference in run-time
has been observed between tournament and ε-lexicase selection [14], due to the
fact that ε-lexicase selection normally only uses a small set of training examples
for each selection event. Although FEW can be expected to scale independently
of the number of attributes, it should be noted that larger population sizes or
more generations may be necessary to achieve satisfactory results for larger data
sets.

3 Related Work

Hybrid learning methods that incorporate constant optimization in GP are quite
common [9,12,26]. Others have proposed two-step approaches designed to first
generate a set of features using GP and then construct a deterministic ML
model. For example, evolutionary constructive induction methods [17–19] have
been proposed to learn features for decision trees. Another method, FFX [16],
applies a non-evolutionary, two-step technique that generates randomized basis
functions for linear regression. FFX was coupled with a third symbolic regres-
sion stage in later research [10]. FEW’s wrapper-based approach is inspired by
evolutionary feature synthesis (EFS) [1], an algorithm that iterates upon a pop-
ulation of synthesized features while using them to fit a Lasso model. EFS is
perhaps better classified as a population-based stochastic hill climbing method
since it does not incorporate typical crossover or selection stages. Nevertheless
it demonstrated the ability of feature space to be searched with EC-inspired
search operators. FEW differs from EFS in its reliance on ε-lexicase survival
to maintain population diversity, and its use of crossover as a search operator.
It also opts for a single population size parameter to minimize the number of
hyper-parameters. Unlike the methods mentioned above, FEW can be paired
with any ML estimator in Scikit-learn [21], whereas previous approaches have
been tailored to use a fixed ML method (linear regression, Lasso or DT).
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In the context of non-evolutionary methods, other feature engineering/
selection techniques are common, such as basis function expansions, feature sub-
set selection via forward and backward selection [6], and regularization. Typically
the feature space is augmented via the basis function expansion, and then either
a feature selection method is used to select a subset of features prior to learn-
ing, or regularization pressure is applied to perform implicit feature selection
during learning by minimizing the coefficients of some features to zero [5]. This
approach is of course quite different from what is proposed in FEW: first, basis
expansion relies on enumeration of the expanded set features (unless the kernel
trick is used, in which case interpretability is lost); second, it either relies on a
greedy approach to solving the feature selection problem [4] or relies on the reg-
ularization penalty to provide an acceptable level of sparseness in the resultant
coefficients, which is not guaranteed.

In the context of meta-learning, FEW can be viewed as a wrapper concerned
specifically with feature construction for a given estimator rather than a hyper-
optimization strategy such as TPOT [20], which optimizes machine learning
pipelines, or HyperOpt [11], which optimizes parameters of ML pipelines. It
would be straightforward to include FEW as an estimator in either of these
systems.

4 Experimental Analysis

A set of 7 real-world and 1 synthetic problems were used to analyze FEW, rang-
ing in sample size (506–21048) and number of features (5–529). As a first step,
we conducted a hyper-parameter optimization experiment, varying the popula-
tion size and survival method for FEW. This hyper-parameter tuning step is
conducted on three of the studied problems with Lasso set as the ML method.
To make the population size somewhat normalized to the tested problem, we
specified population size as a fraction of the problem dimensions; e.g. 0.5× indi-
cates a population size equal to half the number of raw features and 4x indicates
a population size equal to four times the number of raw features. In the second
step, each ML method was tested with and without FEW, and compared in
terms of the accuracy of the generated models on the test set as measured by
the coefficient of determination:

R2(y, ŷ) = 1 −
∑

i∈T (yi − ŷi)
2

∑
i∈T (yi − ȳ)2

where ȳ is the mean of the target output y. Note that R2 in this case can be
negative, since the variance of the residual of the model prediction can exceed
the variance in the data. The FEW settings and problem descriptions are sum-
marized in Table 1.

Each paired ML method uses the default settings from Scikit-learn. For Lasso,
the LassoLarsCV() method is used, which is a least-angle regression implemen-
tation of Lasso that uses internal cross-validation to tune the regularization
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parameter. Support vector regression defaults to using a radial basis function
kernel. KNN defaults to k = 5. The following section describes the set of prob-
lems used.

Table 1. FEW problem settings. The bold values indicate those chosen for the main
analysis based on hyper-parameter validation.

Setting Value

Population size 0.5x, 1x, 2x, 3x, 4x

Survival method tournament, ε-lexicase

Program depth limit 2

Generations 100

Crossover/mutation 50/50%

Elitism keep best

Trials 30 shuffled 70/30% splits

Machine learner Lasso, Linear SVR, KNN, SVR, DT

Terminal set {x, +, −, ∗, /, sin(·), cos(·), exp(·), log(| · |), (·)2, (·)3}
Problem Dimension Training samples Test samples

UBall5D 5 1024 5000

ENH 8 538 230

ENC 8 538 230

Housing 14 354 152

Tower 25 2195 940

Crime 128 1395 599

UJI long 529 14734 6314

UJI lat 529 14734 6314

4.1 Problems

The UBall5D problem, also known as Vladislavleva-4, is the one synthetic prob-
lem studied whose solution is of the form y = 10

5+
∑5

i=1 (xi−3)2
, which is known

to be difficult to solve exactly [30]. The second and third problem tasks are to
estimate the energy efficiency of heating (ENH) and cooling (ENC) requirements
for various simulated buildings [28]. The housing data set [7] seeks a model to
estimate Boston housing prices. The Tower problem consists of 15-minute aver-
aged time series data taken from a chemical distillation tower, with the goal
of predicting propelyne concentration. The Tower problem and UBall5D were
chosen from the benchmark suite suggested by White et al. [31].

FEW is tested on three problems with large numbers of features. For these
problems a population size of 0.5× is used in order to achieve dimensionality
reduction in the model. The Crime problem consists of 128 community features
used to estimate the per capita violent crime rates across the United States [22].
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The UJI long and UJI lat problems are benchmark data sets for predicting the
latitude and longitude, respectively, of indoor users from WLAN signals [27].
The dimensions of all data sets are shown in Table 1. The data sets were divided
70/30 into training and testing sets for 30 trials.

5 Results

The results of the hyper-parameter optimization are presented first, for which the
FEW settings for the main set of problem comparisons are chosen. Afterwords we
present a comparison of model fitness using the raw features, using polynomial
feature expansion, and using FEW for each of the ML methods.

5.1 Hyper-Parameter Optimization

The test R2 values of the models generated using each combination of hyper-
parameters are shown in boxplot form in Fig. 2. As the population size is
increased, and therefore the number of features presented to the ML model,
the models produced tend to perform better, as expected. This performance
improvement appears to level off for the Housing and Tower problem with a
population size of 3×. For this reason we choose 3× as the population size
in our subsequent experiments. Also note that ε-lexicase survival outperforms
tournament survival for larger population sizes, including 3×. This observation
complements other experiments with lexicase selection that show its performance
to be dependent on the number of training cases [15]. ε-lexicase’s good perfor-
mance may be explained in part by the increase in output diversity among the
engineered features, shown in Fig. 3. Here diversity is measured as one minus the
average feature correlations, such that a higher value indicates less correlated
features.
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Fig. 2. Comparison of test set accuracy for various population sizes and selection
methods.
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Fig. 3. Diversity of engineered features using ε-lexicase survival or tournament survival
with 3× population size.

5.2 Problem Performance

The test scores on each problem are shown in Fig. 4 with respect to the ML
algorithm pairing (Lasso, LinearSVR, KNN, SVR, DT) and the feature set used
(raw, 2-degree polynomial, FEW). The final subplot in Fig. 4 shows the ranking
statistics for each method across all problems. It is important to note that the
polynomial feature expansion ran out of memory for the UJIIndoor problems,
and hence no results for that method are included for those two problems. The
memory error for this problem is reasonable given that a 2-degree expansion of
529 features would result in more than 279,000 features.

With the exception of its use with Lasso, FEW outperforms polynomial fea-
ture expansion for each ML method in terms of rankings across problems. The
polynomial expansion worsens the ML rankings for KNN, SVR and DT com-
pared to using the raw features, suggesting that these methods overfit with poly-
nomial features. Conversely, FEW improves the model rankings across problems
for all ML methods except for DT, on which it performs roughly the same as
the raw features. Over all problems and methods, SVR paired with FEW ranks
the best, followed by KNN paired with FEW.

5.3 Statistical Analysis

We conduct pairwise Wilcoxon rank-sum tests to compare the feature repre-
sentation methods for each ML method and problem, correcting for multiple
comparisons. The detailed results are presented in Table 2. In comparison to
using the raw features, FEW works best in conjunction with linear and non-
linear SVR, in which cases it significantly improves model accuracy for 6 out
of 8 problems. FEW improves Lasso on 5 problems, KNN on 3 problems, and
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Fig. 4. Comparison of results for ML methods and FEW-enabled methods.
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Table 2. p-values based on a Wilcoxon rank-sum test with Holm correction for multiple
comparisons. Pairwise comparisons of the feature methods (FEW, Raw, and 2d poly)
are grouped by the ML method and problem. Yellow highlighting indicates that the
first feature method is significantly better than the second, whereas gray highlighting
indicates that the first feature method is significantly worse than the second (p < 0.05).

UBall5D ENC ENH Housing Tower Crime UJIIndoor
Long

UJIIndoor
Lat

Lasso

FEW - Raw 0.0000 0.0000 0.0000 0.0004 0.0000 0.0287 0.0714 0.0208
2d poly - Raw 0.0000 0.0000 0.0000 0.0000 0.0000 0.0105 N/A N/A
FEW- 2d poly 0.0000 0.0000 0.0024 0.0020 0.0000 0.0001 N/A N/A

Linear SVR

FEW - Raw 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0564 0.0346
2d poly - Raw 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 N/A N/A
FEW- 2d poly 0.1646 0.0000 0.0000 0.0428 0.0584 0.0000 N/A N/A

KNN

FEW - Raw 0.0000 0.0000 0.0000 0.4471 0.0004 0.0000 0.0000 0.0000
2d poly - Raw 0.0000 0.0005 0.0000 0.3219 0.6152 0.9528 N/A N/A
FEW- 2d poly 0.0002 0.0000 0.0000 0.1473 0.0016 0.0000 N/A N/A

SVR

FEW - Raw 0.0149 0.0000 0.0000 0.0025 0.2973 0.0000 0.0000 0.0000
2d poly - Raw 0.0000 0.0071 0.0321 0.0000 0.2369 0.7901 N/A N/A
FEW- 2d poly 0.0000 0.0000 0.0000 0.0006 0.1563 0.0000 N/A N/A

DT

FEW - Raw 0.5444 0.0000 0.1646 0.0005 0.0114 0.2625 0.1331 0.0073
2d poly - Raw 0.0230 0.1359 0.0011 0.0048 0.0002 0.0399 N/A N/A
FEW- 2d poly 0.0148 0.0000 0.0005 0.4688 0.9882 0.0644 N/A N/A

DT on 2 problems. The effects of FEW on KNN and DT are mixed, since FEW
performs worse than the raw features for 4 and 2 problems, respectively. In
comparison to 2d polynomial feature expansion, FEW is less effective when
paired with Lasso, performing better in 2 problems and worse for 4 problems
out of 6, all of which are statistically significant. However, when paired with
linear and nonlinear SVR, FEW performs better than polynomial features on
3 and 5 problems, respectively. FEW also performs significantly better than
polynomial features when paired with KNN, and DT, in terms of numbers of
problems.

We also conduct an analysis of variance (ANOVA) test by sampling the
mean rankings of each ML and feature method for each trial over all problems
(i.e. for the data corresponding to the bottom right plot in Fig. 4). In this case
the UJIIndoor results are excluded since the polynomial method failed to pro-
duce models. The ANOVA suggests significant differences in the ML methods
(p = 0.02117) and feature representations (p = 0.0015). A post-hoc test (Tukey’s
multiple comparisons of means) is conducted to determine the source of differ-
ences in feature representations; the results are shown in Table 3. The test shows
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Table 3. Tukey multiple comparisons of means, 95% family-wise confidence level. Test
of significance for feature engineering rankings across problems and methods.

Comparison difference lower upper adjusted p-value

FEW-Raw Features -3.428 -5.652 -1.205 0.00119
2-d polynomial-Raw Features -1.121 -3.345 1.102 0.45463
FEW-2-d polynomial -2.308 -4.531 -0.084 0.04011

significant differences between FEW and raw features (p = 0.0019), FEW and 2-
d polynomial (p = 0.0401), and no significant difference between 2-d polynomial
and raw features (p = 0.4546).

6 Discussion

The results suggest that FEW can provide improved model predictions by learn-
ing a data representation for several problems and ML methods. Research ques-
tions remain, for example: how can FEW be improved when paired with specific
learners? and: how can the number of features be more precisely controlled? Con-
cerning the first question, it is highly likely that FEW could be more tailored to
each learner with which it is paired, in the following ways: (i), by changes to the
fitness function for each engineered feature; (ii), by adjusting the GP parameters
of FEW for each ML method; (iii), by biasing the GP operators used to con-
struct features such that they produce individuals more likely to benefit a given
learner. For example to address (i), it may be advantageous to use an entropy
criterion for fitness when FEW is paired with DT in a classification problem.
Doing so is not straightforward in combination with ε-lexicase survival, due to
the de-aggregated fitness values that lexicase methods expect when selecting
individuals. One solution is to sample the entropy values over subsets of the
training cases.

Concerning the second question, it would also be advantageous to de-couple
the number of engineered features from the population size without having
to introduce more parameters as was necessary in [1]. The motivation for de-
coupling the two is that they form a trade-off: fewer features create a more read-
able model, yet a smaller population size restricts the sampling of the search
space. With regularization available in many ML methods, it is tempting to use
a large population size, although this results in longer run-times. All this must
be considered in the context of the goals of the problem at hand. Ideally the pop-
ulation size would adapt automatically to fit the needs of the problem. There
is some precedent for dynamic population size management in GP that may be
applicable in this regard [24,29].

As a final comment, FEW deserves a treatment on problems other than
regression. For classification problems, a fitness function for continuous-valued
features must be analyzed, since their outputs do not explicitly map to categor-
ical labels. In addition, the options for engineered features may include boolean
transformations for certain problems. FEW should be tested with popular ML
methods in that domain, notably logistic regression with �1 regularization.



A General Feature Engineering Wrapper for Machine Learning 93

7 Conclusions

In this paper, we introduced FEW, a GP-based feature learning method that
interfaces with Scikit-learn suite of standard ML methods to improve data rep-
resentation, a pressing issue in ML today. FEW represents engineered features
as individuals in a population which are used in conjuction by the chosen ML
algorithm to create a model. In order to evolve complimentary features, a new
survival technique, ε-lexicase survival, was presented that maintains a population
of un-correlated features by pressuring them to perform well on unique subsets
of training cases. In comparison to polynomial feature expansion, FEW is better
able to improve model predictions for the problems and ML methods tested.
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